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Abstract

Evoked potentials (EPs) recorded within the
primary sensory cortex of non-anesthetized rats
vary considerably with each peripheral stimula-
tion. We have previously shown that most of this
variance reflects the shift of cortical activation
between habituated and aroused states. Here we
show that a method of matching the potential’s
course by wavelet functions can reliably differ-
entiate single EPs and may therefore, be used as
a probe for indicating the current activation state
of the cortex.

Index Entries: Evoked potentials; wavelet
analysis.

Introduction

A common hypothesis posits that many par-
allel circuits involving functionally repetitious
neurons process information in thenervoussys-
tem. When started by the same sensory event,
the activity of these neurons would be syn-
chronized at a given level and their average
represented in neighboring neuropil as a local

evoked potential (EP; Creutzfeldt et al., 1966;
Eckhornand Obermueller, 1993). If this hypoth-
esis is true, the analysis of EPs might be a more
efficient approach for understanding the brain
in function than observing spike activities of
single neurons. First, the EPs consist of online
responses of many cells averaged at a given
moment of the dynamic brain state in contrary
to poststimulus histograms obtained by sum-
ming spikes from unitary responses in many
trials over a longer time period, possibly dur-
ing different functional states of the nervous
network. Second, stable EPs can be monitored
by means of gross chronic electrodes during
longbehavioral experiments, whichis very dif-
ficult to achieve with the precise requirements
needed for single neuron recordings (Munk et
al., 1996; Wrébel et al., 1998).

We have previously shown that EPs record-
ed after stimulation of a single vibrissae by
chronicelectrodeimplanted atonesiteinarat’s
barrel column, consist of two main components
which can be differentiated in time domain by
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aspecial variation of principal componentanal-
ysis (PCA; Musiat et al., 1998b). These com-
ponents (which accounted for about 90% of the
signals variance in sleeping and about 70% in
behaving animals; Musiat et al., 1998b) were
then identified as representing postsynaptic
activation of supra- and infragranular pyra-
midal cells (Kublik et al., 2001). This is owing
to the ordered, parallel placement of the api-
cal dendrites of pyramidal cells which sum to
form large, easily detected dipoles. Since the
peak amplitude of the infragranular compo-
nent is delayed for about three milliseconds
from the supragranular one and both vary in
amplitude depending on the behavioral state
of the animal; the summed EPs differ accord-
ingly (Kublik et al., 2001). Monitoring the
dynamicratio of activation of the two cell class-
es which provide the main outputs from cor-
tical column (cortico-cortical and
cortico-subcortical) may give insight into
online local processing (Wrébel et al., 1998). In
order to differentiate between the two EP class-
es, we have previously compared amplitudes
of both subcomponents (Wrébel et al., 1998).
This method, however, was not always satis-
factory. Thus, in this paper we have tried to
check whether the variant of the wavelet
method that proved tobe useful in other appli-
cations to biomedical signals (Wojdytto, 1998;
Szczuka and Wojdytto, 2001; Wojdytto, 2002)
can be used for reliable classification of tem-
porary EPs recorded in the rat barrel cortex
during different stages of conditioning.
Wavelet methods are based on the decompo-
sition of the signal by calculating the appro-
priate coefficients in the wavelet basis and
limiting the number of coefficients to the num-
ber necessary to preserve the intrinsic infor-
mation. The method of calculating inner
products (i.e. the discrete wavelet transform)
combines low computational complexity with
the capturing most of the essential informa-
tion present in field potential data (Wojdytio,

1998; Szczuka and Wojdytto, 2001; Wojdytto,
2002). In the second stage, selected coefficients
are used to construct a classification system
based on rough set theory (Komorowski et al.,
1999). Certainly, the method of wavelet repre-
sentation of the signal varies and the particu-
lar application is usually problem-driven. For
instance, the wavelet transform has been used
to find essential elements of auditory-evoked
potential (Bartnik et al., 1992). The matching
pursuit method (Mallat and Zhang, 1993) is
designed to locate the elements of a time-fre-
quency dilation dictionary in the signal and
was applied to the search for sleep spindles
(Durka, 1996). The classification systems for
epileptic EEG and detection of rat emotional
states were constructed recently by Wojdytto
(1998; see also Szczuka and Wojdytto, 2001 and
Wojdytio, 2002). The wavelet denoising was
also used as an analytic tool for evaluating rat
auditory EP (Quian Quiroga and Luijtelaar,
2002).

Methods

Physiological Procedures

The behavioral experiments (see detailed
description in Musiat et al., 1998a) were
conducted on eight rats with electrodes
(impedance of about 1 MQ) implanted at the
level of layer 4 (six animals had monopolar
recordings against the reference in the frontal
bone and two—R33 and R38—bipolar, with
electrode tips at the top and bottom of the
layer). Histological verification ascribed the
recording points from 350 to 700 pm below the
cortical surface. Daily experimental sessions
on each rat lasted around 1 h. The animal was
restrained in a special hammock which kept
the head stabilized and allowed for easy vib-
rissa stimulation. During the session the cho-
sen (principal) vibrissa was bent by means of
piezoelectric device (100 pm for 3 ms) a hun-
dred times in random time sequence (15 to 40 s
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Fig. I. (A) The wavelet method was based on calculation of the inner products (projections) between the EPs
(e.g., above for R46, NI and P2—characteristic waves) and shifted/dilated D5 wavelets (two examples are
shown below). Each EP was described by 158 nonzero wavelet coefficients. (B) Upper graph: fragments of D5
wavelet (encompassed by window in Fig. | A) that were chosen as “major” Fl and F2 functions.The final func-
tion F (dashed line) for rat R46 is also shown. Lower graph: single, EP (R46) (thick line) and the same EP with
gaussian noise added (thin line) drawn at the same time scale as the functions above.

intervals) and thus activated the sensory
stream up to the barrel column from which the
single EPswererecorded (e.g., Figs. 1B,2A-C).
After the habituation period (3-10 d, to allow
the stabilization of mean EP amplitude) the
classical conditioning procedure was intro-
duced in one analyzed session called “experi-
mental.” This session constituted from three
blocks of responses: CONTROL (30 control EPs
continuing habituation period), CONDI-
TIONED (30 EPs evoked by vibrissae stimu-
lation which was always followed by a mild
electric current applied to the rat’s ear; 50 Hz/
0.1-0.5 mA/3 ms for 1 s) and REMAINING

Volume 1, 2003

(including all remaining EPs in the session,
each vibrissae stimulation was continuously
reinforced by aversive electric stimulus). Inone
animal (R53PS), electric shocks were applied
in a pseudoconditioning scheme, i.e., the rein-
forcing stimuli were applied with random
delay time after bending the vibrissa.

Analytical Methods

Rationale

Inour previous experiments we have shown
that introduction of the aversive classical con-
ditioning stimulus aroused the barrel cortex
(Musiat etal., 1998a) and increased the relative

Neuroinformatics
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Fig. 2. (A-C) Averaged EPs from CONTROL (habituation, thin line) and CONDITIONED (thick line) periods
of the experiments for rats R46,R53PS,and R38, respectively. The calculated F functions drawn by dashed lines
and differences of mean potentials drawn by dotted lines are presented on the same figures in larger scale for
better resolution. (D,E) Final parameterization of consecutive EPs as obtained by wavelets and difference of
mean potentials methods. (Empty circles = EPs from CONTROL period; Black circles = EPs from CONDI-
TIONED; Gray circles = EPs from REMAINING periods.) Continuous horizontal lines indicate separation
thresholds.The mean values for each group are shown as dotted lines with 4SEM corridors (gray). (F) Sorting
of EPs with help of both classification methods:wavelets (filled circles) and difference of mean potentials (empty
circles). D, E, and F are taken from rat R46, vertical lines demarcate the three periods of experiments (CON-

TROL, CONDITIONED, and REMAINING).

contribution of the more lagged (i.e., originat-
ing in the infragranular pyramidal cells) from
the two main components of EP (Wrébel et al.,
1998). Accordingly, we were able to sort the
recorded EPs into two classes: “habituated”
and “aroused.” The classification to the latter
class relied on the subtle increase of the local
maximum at the peak of the longer latency
component and was influenced by concomi-
tant spontaneous changes of the field poten-
tial. Nevertheless, it allowed us to show that
contextual aversive stimulation abruptly
changed the frequency of occurrence of both
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EP classes: the habituated type EPs were typ-
ical for the CONTROL period of the experi-
mental sessionand aroused EP type dominated
during the CONDITIONED period. Due to the
habituation to the ongoing aversive stimuli
(Knott et al., 2002) the number of aroused type
EPs slowly decreased again, in the REMAIN-
ING time (Wrébel et al., 1998; see also Fig. 2F).
In this study we have therefore focused main-
ly ondata obtained from CONTROL and CON-
DITIONED periods of the experiment.

In a search for a more reliable classification
tool, we decided to find a general function

Neuroinformatics
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Fig. 3.Two-dimensional subspace where each EP is described by projections on functions Fl and F2. Points cor-
responding to EPs recorded in CONTROL period are shown as empty circles and those corresponding to
CONDITIONED period are filled. Thin and thick crosses mark average EPs from both periods, respectively.
The dashed line shows the optimal projection axis F, calculated by the Fisher algorithm.The oblique histogram
shows the projection of the two groups (marked by empty and filled bars) on the F axis. Below, the similar
histogram is shown which corresponds to projection of the same groups on the axis (dotted) connecting the
average EP points. Big circles (with 2 SEM deviations) indicate the projections of mean values (crosses) on

both axes.

whose inner product with the recorded EP
would give a number characterizing each EP.
The resulting numbers for the whole set could
then be splitinto two groups depending on the
comparison with the calculated threshold. Two
approaches were tested in order to find the
required function. In the first approach we uti-
lized wavelet-based function. First we select-
ed the most significant wavelet coefficients of
the EPs and then the required function was
constructed using only linear rules based on
Fisher discrimination analysis. In the second
approach we used the difference of the mean

Neuroinformatics

EPs from the CONDITIONED and CONTROL
parts of each session as it naturally depended
on the two potential types to be classified.

Initial Adjustment of the Data

The piece of continuously registered local
field potential starting from the vibrissae stim-
ulation and lasting 50 ms was considered as
EP (Fig.1A,B). This potential window was dig-
itized with 2 kHz frequency, which resulted in
100 values per one EP. One hundred EPs from
the experimental session of each rat were ana-
lyzed. Due to overlapping transient artifacts

Volume 1, 2003
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(evoked by animals” movements), some EPs
from each session were excluded from the anal-
ysis as judged visually from the recorded sig-
nal. Thisleftanaverage of 28 EPsin CONTROL
and CONDITIONED periods and 37 EPs in
REMAINING time, for further analysis. For a
givenanimal theaveragelevel of all field poten-
tial values measured during 50 ms just prior
to the movements of the vibrissae was taken
as reference (zero). The EP amplitudes were
then normalized by dividing them by the
Frobenius norm (square root of the sum of the
squares of the elements of an N column matrix
where each EP was represented by 100 values
in one column) and multiplying by JN .

Since all chronic electrodes were placed in
slightly different cortical depths and data were
recorded with either mono- or bipolar elec-
trodes, the EPs registered from different ani-
mals also differed (see Fig. 2A-C). We have
therefore decided to fit a specific function for
each animal.

Wavelets

The signal is decomposed in the orthonor-
mal basis formed by the translations and dila-
tions of the mother wavelet W. The elements
of this basis are specified as:

W, (x) =202 x"k)

Since the basis is orthonormal, coefficients
of the signal s are given by inner products:

€ (0) =[SO (x)dx

For wavelet W, we chose Daubechies D5
wavelet (Daubechies, 1992) because it is con-
tinuously differentiable and has adequate
length of support. Our previous research also
proved that using this wavelet for biological
signal processing preserves essential inputsig-
nal information (Wojdytto, 1998).

Although most of theapplications of wavelet
methods use a tree algorithm of decomposi-
tion, we directly calculated the inner products

Volume 1, 2003

between measured signals and translated/
dilated D5 wavelets (or its appropriate frag-
ments). This procedure allowed us to generate
coefficients from short-time EP signals associ-
ated not only with high but also with low
frequencies (below 20 Hz).

At each level of dilation (N=2,...,7) we were
using a D5 wavelet 9-2N points long (lasting
9-2N/2 ms). The beginning of the wavelet was
positioned at the beginning of the signal and
their inner product was calculated. Next, the
wavelet was shifted 2N points to the left or right
(until it did not overlap the signal) and con-
secutive inner products were calculated.

Two elements of this basis are shown in
(Fig. 1A, bottom). The analyzed EPs (repre-
sented by 100 numbers each) can be under-
stood as vectors in 100-dimensional space, and
the chosen wavelets as an overcomplete set of
functions (not a basis) since each EP was char-
acterized with 158 non-zero coefficients.

Inorder toreduce the number of coefficients,
we have chosen two elements of the wavelet
basis, with the highest absolute values of inner
products for most EPs (i.e., for all 743 signals
obtained from 8 rats). This was done by find-
ing a threshold that was reached by the coef-
ficients obtained for 70% of EPs with only two
wavelet functions. Such functions were expect-
ed to be the most sensitive for identifying the
systematic differences expected between EPs
recorded in both (CONTROL and CONDI-
TIONED) periods. We called these “major”
functions F1 and F2 (Fig. 1B, top).

Each EP was then described by two param-
eters, the inner products which can be intu-
itively understood as projections on each of the
selected major functions. AllEPs recorded from
each of the animals could then be represented
as points in the two-dimensional space (Fig. 3).
Separate representation was prepared for data
from each animal and allowed finding direc-
tion of an axis which optimally differentiated
EPs from CONTROL and CONDITIONED EP-
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groups (Fisher discrimination analysis, Dillon
and Goldstein, 1984). This direction was
obtained by such a rotation of the axis con-
necting averages from both groups (which is
equivalent to difference of means in the sub-
space), which gave the best separation of the
groups:
Where:

[n1—1]C1+[n2—1] 2t
nl+n2-2

V:(M2—M1)E(

V = direction vector,

M1, M2 = means of the groups,

nl, n2 =numbers of elements in the groups,
and

C1, C2 = covariance matrices for the groups.

This axis was described in the F1/F2 space
by the straight line equation F=A F1+B F2
(V=[A, B]here). The projection of each EP-point
on the F axis gave us a new parameter, char-
acterizing each EP with single number f. This
projection corresponded to calculating inner
products of consecutive EPs with function F
(function F is a combination of functions F1
and F2 with coefficients A and B). The value f
could be then found by calculating A f1+B f2,
where f1 and f2 are the projection values of a
given EP on the major functions.

The fparameters, each corresponding to one
EP, were finally divided into two classes insuch
a way that led to a minimal number of EPs of
class 1 in CONDITIONED group and of class
2 in CONTROL group. The separating value
was set as the value resulting in the minimal
sum of the squares of the parameters that were
classified as opposed to the majority of the
group (compare Fig. 2D,F).

Difference of Mean Evoked Potentials

A similar classification as described previ-
ously was obtained using the difference
between averaged EPs from groups CONDI-

TIONED and CONTROL instead of function
F ineach animal’s data (Fig. 2A-C). The exam-
ple of resulting projections of the consecutive
EPs on that difference is shown in Figure 2E.
The separating threshold was found similarly
as in the wavelet method (compare Fig. 2E F).

Results and Discussion

Efficiency of EP Sorting in Classical
Conditioning Paradigm

In this paper, we attempted to check whether
the wavelet method could be used for reliable
classification of single EPs recorded online
fromabehavingrat. Up to the present, the most
popular method for EP classification has sim-
ply relied on the measure of their amplitude
(e.g., Castro-Alamancos and Connors, 1996).
We have previously shown that the parameter
based on comparison of the amplitudes of EP’s
main components might be a good measure of
the current activation of the sensory cortex
(Wrdbel et al., 1998). However, this method
needed perfect recordings, which were not
always secured in chronic experiments. The
wavelet and difference methods that use the
information from the EP shape within the
whole time window were perfect candidates
for such ongoing classification of evoked
potentials. To test whether this method will
work in typical behavioral experiment, we
used the classical paradigm from our previous
studies where the recorded EPs were shown to
depend on contextual aversive stimulation,
absent in CONTROL time, and systematically
accompany the sensory stimuli during the
CONDITIONED period of experiment (Wrébel
et al., 1998; Kublik et al., 2001).

Since both the wavelet and difference meth-
ods were able to discern the data into classes
even if the difference was incidental; we have
therefore compared results of classification
(measured in index of sorting efficacy for both
methods) of experimental data and of the same

Volume 1, 2003
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Table 1A. Classification with Wavelet Method
Rats R33 R38 R46 R49 R50 R52 R53PS R59
Exp. Data 73.7 73.3 82.7 65.5 60.7 69.1 71.7 73.5
Control Data 63.3-4.5 60.6-4.0 60.6-4.2 61.042 61.6-42 58.6-3.5 61-4.2 60.1-3.7
Significance p<0.014 p<0.002 p<10° p<0.15 p<0.57  p<0.003 p<0.007 p<0.001
Table 1B. Classification with Difference of Means
Rats R33 R38 R46 R49 R50 R52 R53PS R59
Exp. Data 78.9 70.0 78.8 79.3 64.3 83.0 80.0 76.5
Control Data 70.3-4.1 67.9-3.4 67.1-43 704-42 70.8-4.6 66.3-33 66441 66.1-3.7
Significance p<0.02 p<0.27  p<0.005 p<0.002  p<0.92 p<10* p<0.001  p<0.004

data appointed randomly by half to PSEUDO-
CONTROL and PSEUDO-CONDITIONED
groups. Such a random distribution was done
100 times and each time different EPs were
accounted as belonging to both PSEUDO-
groups.

The efficacy indexes for experimental and
random data are presented in Table 1A and B.
Both classification methods successfully dif-
ferentiated the experimental and randomized
data. In both cases six significant results (p<
0.05, Student t-test) were obtained. We also
compared total efficacy indexes obtained for
experimental data from the whole group of rats
with indexes obtained in all PSEUDO-experi-
ments. These total results were significant:
p<10-11 in wavelet method and p<10-7 in dif-
ference of mean EPs method (Student t-test).
We conclude that both methods used in the
analyses are useful tools for differentiating
functional changes of sensory evoked poten-
tials influenced by contextual, aversive stim-
ulation. The efficacy index did not reach one
in any experiment, which was to be expected
when taking into account dynamic fluctuation
of the incoming neuromodulatory activity and
other spontaneous inputs continuously reach-
ing the recorded tissue.

Sensitivity for Noise

The intrinsic noise of signals recorded from
each animal were estimated by independent
observers and, more objectively, by calculat-
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ing the ratio of FFT mean amplitudes under
vs over 100 Hz (not shown). This noise was
small for data from rats R33, R46, R53PS, R59,
average from R49, R50, R52, and high from the
R38. When compared to the efficacy indexes,
thisestimationindicated that the intrinsicnoise
was noteworthy, but not a major obstacle for
our sorting analyses.

In order to estimate the sensitivity of both
methods to the outer disturbance, all normal-
ized experimental signals were summed
with white gaussian noise of high amplitude:
with mean zero and 0.004 standard deviation
(Fig. 1B, top). Similar analyses as those used
for the original data were then applied and
their results are presented in Table 2A for
wavelets and Table 2B for mean potentials
method.

The contamination of the original EP data
with noise did not result in change of the cho-
sen major functions F1 and F2. The efficacy
indices calculated for the disturbed signals
were smaller than for the originally recorded
signals, but did not change for the control
PSEUDO- groups. However, thenumber of rats
in which significant differences between EPs
in CONTROL and CONDITIONED groups
were found decreased to four. On the other
hand, the difference of averaged EPs for dis-
turbed signals was much noisier (especially in
high frequency range, not shown) than
obtained for original recordings (Fig. 2A-C).
Such a variability of the function which was
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Table 2A. Classification with Wavelet Method, Noised Data
Rats R33 R38 R46 R49 R50 R52 R53PS R59
Exp. Data 71.1 71.7 84.6 65.5 66.1 69.1 66.7 70.6
Control Data 63.1-5.3 60.0-3.9 60.6-43 61.0-4.7 614-42 583-39 60.2-4.6 60.3-3.8
Significance p<0.07  p<0.002 p<10® p<0.16 p<0.13 p<0.004 p<0.07 p<0.005
Table 2B. Classification with Difference of Means, Noised Data

Rats R33 R38 R46 R49 R50 R52 R53PS R59
Exp. Data 81.6 75.0 82.7 79.3 76.8 86.2 83.3 77.9
Control Data 79.4-5.0 724-4.0 72.0-45 747-42 758-43 74.1-3.6 742-47 76.8-4.3
Significance p<0.33 p<0.26  p<0.011  p<0.14 p<0.41  p<0.0009 p<0.03 p<0.39

used for the final sorting of disturbed signals
did not change much of the efficacy index for
experimental groups but increased the index
for the control (PSEUDO- groups) data in such
a way that only three significant results were
obtained. However, the total group-results in
both methods were significant (p<10-2 and
p<10-4inwaveletand mean potentials method,
respectively).

The wavelet method appeared to be more
resistant to added noise than the one using dif-
ference of mean potentials. There mightbe three
reasons for such an observation. First, in con-
trast to naturally noisy difference function,
function F contains only low frequencies and
therefore is less sensitive to the added high fre-
quency noise. Second, by using the wavelet
method we were able to reduce dimension of
the space (from 100 to 2) without significant
loss of information. Third, the important step
influencing the efficacy of the classification
depended on finding the best angle for projec-
tion of the two-dimensional non-symmetric dis-
tributions shown in Figure 3 on the final axis.
The Fisher analysis was specially designed for
suchanevaluation (dashed linein Fig. 3) where-
as projections on the difference of mean poten-
tials (in this two-dimensional subspace) are
equivalent to projections on the line connect-
ing the calculated means (crosses in Fig. 3). The
projection histograms are presented in Figure
3.Itisclear that Fisher analysis resulted inmore
compact and better separated groups.

Neuroinformatics

Functional Considerations

In this paper we have presented the new
method of classification of single EPs, which
can reliably account for the recorded respons-
es to one of the two classes. This result con-
firms our previous observations that contextual
stimulation changes the EPs recorded in the
barrel cortex by vibrissae stimulation from
habituated to aroused-type (Wrébel etal., 1998;
Wrébel and Kublik, 2000). Note that in both
(wavelet and difference of mean potentials)
analytical approaches a significant difference
was also found for rat R53PS, which was
trained in a pseudoconditioning regime. This
indicates that change of EP type was notowing
to the conditional pairing of the two stimuli,
but rather resulted primarily from the unspe-
cific arousal accompanying novel (aversive)
stimulation. Thus a single EP course may serve
as an online indicator of the underlying acti-
vation state of the cortical tissue within dif-
ferent parts of the behavioral paradigm. The
calculated function F was found to be highly
correlated with the change of EP-courses (dif-
ference of means) at different arousal states
(Fig. 2A-C). This function reached local
extremevalues at thelatencies of peak respons-
es for N1 (around 10 ms) and P2 (from 20 to 40
ms) characteristic EP waves and therefore
should also be most sensitive to dynamic vari-
ations of the underlying physiological mech-
anisms (Wrébel etal., 1998; Wrobel and Kublik,
2000).
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